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GAUSSIAN ARBITRARILY VARYING CHANNELS
e
o_;:‘t. 1. INTRODUCTION
iy
1.8 Pl
’%:::i Consider the following communications channel (cf. Fig. 1). Once each second, the transmitter
‘ chooses for transmission to the receiver an arbitrary real number, say u; at time i, such that the
C o sequence { u; ] satisfies a power constraint Pr (to be made precise below). In transmission, this
';‘:s: number is corrupted in such a way that it is received as u; + n}; + s5;,. The elements of the sequence
K ":{ {n2} are independent, zero-mean Gaussian random variables, each having variance N,. The
) . . . . .
‘::,‘,\ transmitter and the receiver have no knowledge of the sequence {s, }, other than that it satisfies a cer-
f.gjgzg tain power constraint, say P, (also to be made precise below). The sequence\( s;} may have arbitrary,
: time-varying, possibly non-Gaussian statistics. The goal of the transmitter and receiver is to construct a
o coding system to reliably convey discrete source data over this channel, knowing only N, , Pr, and P,.
L) ’
4 g't Y
tkﬁl ‘
:.": POWER < P,
j.::l.. JAMMER
Aty
N POWER < P.
34 s s
¢ INFORMATION STOCHASTIC STOCHASTIC
2398 SOURCE ENCORDER DECODER DESTINATION
‘ ) T
I 1
15 3% |
ﬂ | |
| n° ~ NIO. N} lI
. |
Y . | |
e | __ commaton |
whh
:g:,:. Fig. | — A Gaussian arbitrarily varying channel
i
i
o We call the preceding model a Gaussian Arbitrarily Varying Channel (GAVC), since it is the con-
. tinuous alphabet, Gaussian-noise-corrupted analog of the discrete, memoryless, Arbitrarily Varying
,,":, Channel (AVC), introduced by Blackwell, Breiman and Thomasian [1] (see also Wolfowitz {2,3]). The
;:vl: study of discrete, memoryless AVCs has generated a substantial body of literature; much of this is sum-
,9{2. marized in Ref. 3, chapter 6.
!"|' W
Vet

By comparison, GAVCs have received considerably less attention. Blachman [4, 5], has obtained
o upper and lower bounds on the capacity of a GAVC (using the maximum probability of error concept)
'3 when the sequence {s;) is allowed to be chosen with foreknowledge of the transmitter’s codeword.
“? Basar and Wu [6] have investigated the use of essentially the same channel, for a different source
transmission problem in which the source is a discrete-time, memoryless Gaussian source and reliability

oM . . . . . .
ixi is measured by mean-square distortion. Dobrushin [7] and later McEliece and Stark 8] have studied
e what might be called a Gaussian compound channel [2,3] that is similar to the GAVC except that the
o {5, )} is constrained to be a sequence of independent, identically distributed random variables.

"n‘{ The practical significance of the GAVC is seen as follows. One may view the sequence {s,} as
s selected by an intelligent and unpredictable adversary, namely the jammer, whose intent is to disrupt
::::. the transmission of the sequence | &, | as much as possible. The jammer, like the transmitter, is subject
s to the natural constraint of finite power but is otherwise free to generate any signal he chooses.

4‘ Manuscript approved February 13, 1986,
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Ko HUGHES AND NARAYAN
_;:: In this report, we study four GAVCs corresponding to two different types of power constraints
%.* (peak and average) on the transmitted codeword and on the jamming sequence. Our main results are
:!: coding theorems, one for each pair of constraints, characterizing the asymptotic reliability that can be
71:"- achieved by optimum random codes on these channels. We say "asymptotic reliability” rather than
S capacity because, as we shall find, these channels generally have no capacity, per se.
AT 2. DEFINITIONS AND RESULTS
2%
" A codeword of length n for the GAVC is a sequence of n real numbers selected by the
’\ transmitter, say w= (u,,...,u,). Similarly, a jamming sequence of length n, denoted by s =
vk (sy,....5,), is a sequence of n real numbers selected by the jammer. These sequences may be thought
-y of geomeltrically as points in n-dimensional Euclidean space (R”). With this interpretation, the output
;}‘, of the GAVC corresponding to the codeword u and the jamming sequence s is
P
::: y*=u+7n?+s, .1)
NS . . . o . .
il where n? denotes an n-vector of independent, identically distributed (i.i.d.) N (0, N,) random vari-
ee. €

b ables.t
;',l';: An (n, M) block code, C,, is a system#
1yl
e C,=1{(u, D),..... (uy, Dy }, (2.2)
c:“'.!

i) g! .
BRY where {u;] M, are codewords of length n, and { D,} ¥, are disjoint (Borel) subsets of R", called decod-

! ing sets. This code may be interpreted as a means of transmitting an integer message from the set
‘;{’. {1,..., M} to the receiver using the GAVC. To send the number 1< i< M, the transmitter sends
e the codeword u,. At the receiving end, if the received sequence y* lies in the set D,, the receiver
4
Don infers (perhaps incorrectly) that the transmitted message was i, otherwise, if y* is exterior to each
e , . . .
&Y decoding set, the receiver draws no conclusion about the transmitted message.

We are interested in the problem of transmitting the output of a given information source, gen-
4 . . . . . .ge -
."i erating R bits per second, over the GAVC with minimum error probability (to be defined). The goal

& . of the transmitter is to construct a block coding system of length n that suffers an error probability no
’o:.' greater than this minimum, regardless of the jamming sequence s. The goal of the jammer is to inflict
i:::c the largest possible error probability on any code chosen by the transmitter by an appropriate choice of
4% s. For the transmitter, a strategy to accomplish this goal consists of an (n, 2"R') code; a strategy for
the jammer is a jamming sequence of length n.
0'.{#
':f@h We allow both transmitter and jammer the additional flexibility of being able to choose their
'.,::‘n.' respective strategies randomly. Accordingly, we define an (n, M) random (block) code,
B
by (Cut,DP)..... (ugy, D} }, (2.3)
;' o to be an (n, M) code-valued random variable that satisfies thc obvious measurability requirements. A
"y (random) jamming sequence of length n, with the obvious definition, is denoted by s*.
el
‘
N » Clearly, if no further restrictions are imposed on the random codes and jamming scquences, the
-'\.:‘ problem has an unintercsting solution. The error probabdility of any fixed, positive rate, random code
can be made arbitrarily close to one by letting s * be memoryless, zero-mecan, Gaussian noise of arbi-
Y, trarily large variance (or power). In practice, however, there will be other restrictions that prevent such
4
T
" — e
:'. *' +Throughout this rcpnrl except where otherwise indicated, asterisks are used as superscripts to denote random varubles, bold
,'n"c Jower case letters indicate vectors (or vector-valued mappings) in R", and N (u,:rz) denotes it Gaussian distribution with mean
) u and variance _
X< tWe extend this definition to nonintegral M as follows: By an fa. M) code we mean an (n . M') code where MY s the smallest
é - integer greater than or cqual to M.
"
3
!. "
2 2

-(‘\c'\‘.i“

"\

}*~§ RS

LY
a4 '»"lﬂ .ﬂ‘- 3 A X ‘ Y

R

!
m DHSRON R 0,

DY



1 - E=r=
A A

e

"0

-

- -_%- -

pr -

. il g %
- A

-

RPN

R S
e

NRL REPORT 8971

trivial solutions. An interesting and natural restriction to investigate is that of placing some kind of
power consiraint on the codewords and the jamming sequences. In this report, we consider two types of
power constraints: peak and average. We say that C3 satisfies a peak input power constraint (PI} if each
codeword lies on or within an n-dimensional sphere (n-sphere) of radius </ nPr almost surely (a.s.), i.e.,
if foreach 1 < i < M, the codeword u?= (uf,,..., u?,) satisfies

1 < »2
- 2 ui,' < PT (a.s.). (24)

n ;2

This code satisfies an average input power constraint (A1) if the expected power averaged over all code-
words is at most Pr; i.e., if

j=1im=]

a1ou
ElnM 2 zu,,-] SPT, (25)

where E { .} denotes mathematical expectation. We also define two similar power constraints on the
random jamming sequence s*. We say that s * satisfies a peak jamming power constraint (PJ) if

n
l” Y sP< Py (as) (2.6)
i=1
and an average jamming power constraint (A]) if

E l” Y 2l o<p. Q.7

There are two input power constraints (Pl or Al) and two jamming power constraints (PJ or AJ),
and so there are four possible combinations of transmitter and jammer power constraints to consider.
We adopt a simple binary nomenclature to describe each case. In the sequel, when we speak of the
GAVC A | B, we mean the GAVC with input power constraint A (= Pl or Al), and jamming power
constraint B (= PJ or A)).

We now specify what is meant by the "error probability” of the code C%. Given a code C? on the
GAVC A | B and the jamming sequence s*, we can in principle calculate the (maximum) probability of
error:

A(C2,s*) = max Priu*+n®+s*¢€ DY, (2.8)

lsis M

where [_),‘ denotes R" — D} However, s* is not known in advance to the transmitter and may change
from one block to the next in an unpredictable and arbitrary way, subject only to the power constraint
B. The smallest error probability guaranteed 1o be achievable by the code €% is the supremum of Eq.
(2 8) over all B-admissible s*. Therefore we define the error probability of the code C? by

AMICC) = sup A (C2s®) . Q2.9

wherc the supremum is performed over all B-admissible +*.
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2 HUGHES AND NARAYAN
:'*"5‘ We now ask: For a given source rate R and constraint pair A | B, what is the smallest error
g ' probability, A% (C?), that can be achieved by any (n, M) random code C? that satisfies constraint A,
:’t J when M > 2"% and n is large? Clearly this error probability depends on both the rate R and the con-
e straints A | B. Accordingly, we say that a pair (R, ), where R 2 0 and 0 < A < 1, is achievable for
ALAS the case A | B (achievable A | B) if for all ¢ > 0 there exists, for all n sufficiently large, an (n, M) ran-
dom code C?} satisfying constraint A, so that
o
B, log; M > n(R ~€) (2.10)
N
o]
!... and
e
A (C)Y <A +e. Q.1
NI
W
;:‘. Let R, 5 denote the set of all achievable pairs (R ,A) for the GAVC A | B.
] Q . . . Vo
;':;.. Note that if a certain pair (R .A) is achievable A |B, then all pairs (R’,A"), such that
DT R’ < R and A’ 2 A, are also achievable A |B. Consequently, R |z must be of the form
. Ris={(RMIOS RS CyygN),0< A< 1} 2.12)
AU
[ "h‘H
:{ where C, 5 (A} is a monotone increasing function of A. Thus, to characterize R,z it suffices to
Lo determine C, g (A).
i
. The function C, |5 (A) is called the A-capacity of the channel (cf. Csiszar and Korner [3] and Wol-
¢ \'_" fowitz {2]). It can be interpreted as the largest rate of transmission that can be achieved by a code with
\._-,: error probability no greater than A, for large n. If C, 5 (M) is equal to a constant on 0 < A < 1, say
e C4 18, the latter is called the capacity of the channel; otherwise, if C, | (A) is not constant, we say that
{4: no capacity exists.t Most simple channel models that arise in information theory have a capacity. In
- this report, we show that certain GAVCs generally have no capacity; i.e., C45 (A) is not constant. This
interesting and somewhat surprising fact distinguishes GAVCs from discrete AVCs: Blackwell, Breiman,
c;"l.' and Thomasian {1] have shown that the latter always possess a (random coding) capacity.
Yl
1)
!::::. Recall that our objective is to determine the minimum error probability suffered by large block-
::.4:: length random codes of rate R when used on the GAVC A | B. Define this error probability by
’o"'
A8 (R) = limsup mf AB(C?), (2.13)
n — oo
.;..l:.
)
::'g::: where the infimum is over all A-admissible (n, 2"®) random codes. It is easy to see that the relation-
.::‘.:a ship between A* '8 (R) and C, 18 (A) is
(W)
D AMIB(R)=min{0 S AS 11C3N) 2 Rora=1}. (2.14)
" Although it clearly provides the same information about R, |5 that C, 5 (A) does, A* '8 (R) is often
:: easier to interpret.
ol
: ™ We now present four theorems that characterize C, |5 (A) for cach pair of constraints A | B, the
s proofs of which are provided in the next section. We first consider the case in which both transmitter
e and jammer are constrained in peak power, i.e., the GAVC P1|PJ. This channel actually has a capacity
;':;:l that is given by the following familiar formula.
[) -
N _—_—
::’ C tAn alternative (e.g. Csiszar and Korner [3]) definition of capacity (which always exists) is
:,":, (‘“'_.h:,‘ Caia ).
Y, Our definition is that of Wolfowitz [2].
[,
‘-’2‘
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A-capacities are found.

[
o NRL REPORT 8971
s,:;‘ Theorem 1: For the GAVC Pl | PJ, a (random coding) capacity exists and is given by
o
L)
z: l PT
C ) =2¢C = —lo 1+ —— (2.15)
'_ 2N pr ps ) g2 N, + P,
foral0 < A < 1.
"
L]
AN Remark: Blachman ( [4], p. 53, Eq. 10) states (without proof) a similar result.
>
": It is interesting to note that Cp;|py is identical to the capacity formula of the memoryless, Gaus-
e sian channel that would be formed if the jammer transmitted a sequence of i.i.d. N (0,P;) random vari-
. ables (eg. Wolfowitz [2], Theorem 9.2.1).f+ We conclude, for the GAVC PI | PJ, that an intelligent
.:, jammer, regardless of how he distributes his power, can do no more harm (in the sense of reducing the
’% achievable region) than Gaussian noise of the same power.
.:}:. We now change the jamming power constraint from PJ to AJ (i.e., GAVC PI | AJ) and ask
» whether the above conclusion is still valid. Since bounds on average power are weaker than those on
peak power, it is obvious that Ry, |4, is a subset of Ry, p,. However, as the next theorem demon-
Y strates, this inclusion is strict. In fact, we find, for this and all remaining cases in which either
: transmitter or jammer or both are subject to average power constraints, that no capacity exists, i.e., only

Theorem 2: For the GAVC with constraints PI | AJ the (random coding) A-capacity is

Pr
C A= —lo 1+ ——————— (2.16)
pr1as( 2 g2 N, + P,/ ]

)

A forall0 < A < 1.

4 Remark: Cpy| 45 (0) is interpreted as 0.
&

. Observe that the expression for Cpr4; () is identical to that of Cpy|p; except that the jamming
: power appears boosted by a factur that is the reciprocal of the tolerable error probability, A\. Some
"WQ insight into this formula can be gained by stating the result in terms of the error probability suffered by

codes of rate R. Theorem 2 states that, for increasing n, optimal (n, 2"%) random codes satisfying PI
"y suffer an error probability that approaches
o
X (L T2 <c M
10 AP (RY = P, — (4R — DN, = Lerta
[}

v 1, R < Cpio (1) 217

:_
o against an AJ-constrained jammer.
‘, The function AP"'% (R) is increasing, positive whenever R is positive, and for small R becomes

asymptotic to 2 In 2 R P,/ P;. The region Ry, 4, is sketched in Fig. 2. Apparently, a code can
achieve high reliability (i.e., A*/ (C?) = 0) only in the limit as R or P,/ P, become vanishingly small.
; Evidently, reliable communication is impossible at any positive source rate.

-
o

It 1s also the formula obtasned by Daobrushin [7] for the capacity of the Gaussian compound channel.
tNote that this Gaussian amming sequence does not salisfy P)

-
L)

- It is possible, however, to construct a jamming sequence that
:: does satisfy PJ and that yiclds nearly the same capacity ¢f proof of Theorem 2)
3y
S
h) )
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ﬁ::_ 2 PM:J

' . &

¢ B 5 /
 / ////' /)

PII PJ

R—

Fig. 2 — The achievable regions for GAVC Pl | P)
and P1] AJ

We now sketch the basic idea behind Eq. (2.17) (or equivalently, Theorem 2); a detailed proof
follows in Section 3. Let C» be any Pl-admissible random code of rate R. Suppose the jammer
transmits only jamming sequences s* consisting of i.i.d. sequences of N (0, P*) random variables,
where P* is a nonnegative random variable that satisfies EP* < P;, so that s* satisfies AJ. (Clearly,
this restriction can only increase the achievable region.) With this restriction, the channel "seen" by the
transmitter is a discrete-time, Gaussian channel with (u..known) noise power N, + P*. According to
the coding theorem and strong converse for this channel (e.g. Wolfowitz [2], Theorems 9.2.1-2), if

P
R < L iog, 1+——’—l

2 N, + P*

and n is large, then A% (C?) = 0 is possible; however, if

Py

1 P S—
TN+ P

1
R > *2“ lng

)

then A* (C?) = 1 is certain. The jammer must therefore choose
pry 21 N,
T4k~

to be guaranteed an appreciable error probability, and this power is sufficient to yield an error probabil-
ity of unity. Therefore, the best codes have error probability that approximates the probability of this
event

A(C) = Pr {P‘?

Finally, the right-hand expression above takes on a maximum value of A”'#(R) when P* is chosen
so that

P,
P PP=——— Nt =1-P{P=0)= PLLAT (R .
r 1) ' r b= )

It follows that A%/ (C?) is not less than A4/ (R) for large n.

v
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Although we have allowed the jammer foreknowledge of the statistics of the transmitter’s random
code when selecting a jamming sequence (c¢f. Eq. (2.9)). it turns out that this knowledge is unneces-
sary. Remarkably, the jamming sequence above does not depend on the detailed structure of the code,
but only on the blocklength n, the source rate R, and the parameters Py, P, and N,. Also interesting
is that this jamming sequence is essentially a pulsed strategy (ie., either "off” or “"on" with high peak
power). Mecmoryless, pulsed jumming sequences have been shown to maximize the error probability of
certain uncoded modulation systems, such as BPSK (c.g. Simon et al. [9)). Theorem 2 shows that
pulsed jamming sequences with memory play a similar role for random block codes on the GAVC.

We have scen from Theorem 2 that an average-power-limited jammer has a tremendous advan-
tage against a peak-power-limited transmitter; in fact, reliable communication is impossible in this case.
It is interesting to turn the tables and ask whether the transmitter might similarly gain by varying code-
word power against a peak-power-fimited jammer, as in the case Al | PJ. The next theorem shows that
little advantage will be gained.

Theorem 3: For the GAVC with constraints Al | PJ. the (random coding) A-capacity is

C (A) 1 | 14»——[)7/(l — ) (2.18)
o B )
e SR N. + P, '

forall 0 < A < 1.

The corresponding achievable region is sketched in Fig. 3. We see that if a high error probability
can be tolerated, the allowable coding rate is much improved: however, at low error probabilities
Cypy (N) approaches Cpyoopy, and the improvements are negligible. As in the other cases. we can state
the result in terms of error probabilities: Optimal Al-admissible (n.2"%) random codes suffer an error
probability that, for large n, approaches

0. R < Cyips (0)
AR = P 2.19)

I - R > Cyipy (0).
(4K — D) (N. + P)) e

Thus the rates at which reliable communication can occur are the same as the case P11 PJ. Clearly,
codeword power variation offers little improvement o the transmitter.

| INTONR Fhe actievable teym dor GANC AL P
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oA
.-,’. We now consider the GAVC Al | AJ. As Theorem 3 shows, the additional flexibility offered by
.g::') the power constraint Al is relatively useless against a peak-power-limited jammer. We now ask if the
';-.‘; transmitter might at least reduce the gain of the average-power-limited jammer compared with the
.r',:.‘- GAVC Pl AJ. The next theorem shows that some limited improvement is made.
= Theorem 4: For the GAVC with constraints Al | A) the (raundom coding) A-capacity, for N, > 0, is
::.:- given by
P
S Liog, |14 —1 1 0<hga
b 2 N, + P/ 2x ‘
= 2.20:
% Cartar W) =1 oo | 14 FLO=D ) (2.202)
2N —lo ——— |, A <
g 2 " (I = M) N,
-
-'.:- where
A = e
AN ¢ 2N, P,
SHAR
A '.,“.
S
tf,: and in the case N, = 0 by
togy [ 14+ 252 o<a <
LN 2
2 o8 , = 2
CAI|AJ (A) = (220b)
Dog {1+ =—2 | Ler<
2 ! =P | 2
ol Remark: Equation (2.20a) tends continuously to Eq. (2.20b) as N, — 0.
q The corresponding achievable region is sketched in Fig. 4, with Cpy(py, Cppi 45 (V) and Cyyppy (A)
':.‘{'_{ included for comparison. Optimal (n,2"®) random codes satisfying Al must then, as n grows large,
L$j\; suffer an error probability that approaches
N P, 4R — 1)
) 4 R £C ()
.)n"j) Al AS 2(PT‘(4R"1)Ne) ‘ S At SR
s A (R) = (2.21a)
o e . T R P (%
w3 4k — 1) N, :
.-r::w
oo when N, > 0, and
v P, (4f — 1) R<l |4+ Py
Yo —_— - lo - =
o 2P; S0 P,
ooty A4 (RY = (2.21b)
Tag _~__Ifr___ R>Llog 1+ﬁ
v 24k — 1P, 2 P,
v
S
‘.C'f_.,-{' when N, = 0.
tar
SNy For R < C4 14 (A.), observe that the error probability is half of that of GAVC P1| AJ; however,
o when R > C, 14 (A.) the probability of being correct (= 1 — A% (C*,)) is (1 — 2x,) of that in the
::.: case Al [PJ. Cy i (V) is therefore a compromise between Cpy| 4y (A) and Cqyps(A). As in the case
_.\_.-I;._ PI AJ. the error probability can be made small only by making R or P,/ P; small.
0
N
) B
e

»
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»
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Fig. 4 — The achievable region for GAVC Al AJ (with
all other A -capacities included for comparison)

An intuitive justification of Eq. (2.21a) is given here (a rigorous proof is given in Section 3).
Suppose, as before, the jammer transmits only i.i.d. sequences of N (0, P$) random variables, say s,
where Pj is a nonnegative random variable that satisfies EP§ < P,._The transmitter constructs a ran-

dom code C; in the following way: He first selects a random code C: of rate R whose average power
is no greater than unity, i.e.,

1 M n 5 <1
E{ — uj;
nM l?l i-zl Y =

and then, to form C}, he multiplies each codeword in E‘; by /Pt, where P} is an independent nonne-

gative random variable satisfying EP} < P;. The performance of this code against s* is a function of
the signal-to-noise ratio P{/ (P + N,). As in the earlier argument following Theorem 2, if

Pt S r-)
P3+ N, *
then A (C%,s*) can be small; however, if
Pt
——— < (4% -]
P31+ N, ( )

then it is certainly true that A (C},s*) = 1. Therefore, for the best choice of C*, we have for large n

A(Crs*)=Pr{Pr< (4R - 1) (P}+ N.) ). 2.22)

The optimum error probability thus depends only on the power distribution of the transmitter and jam-
mer. Naturally, the transmitter wants to minimize Eq. (2.22) with an appropriate choice of P, and the

jammer wants 1o maximize it by an effective choice of P3. Therefore, an optimal code suffers the error
probabitity

AYA(CH) = max min Pr{Pt< (4 —1)(P3+N.)}.
PLEPT S P, PSEPS < Py

It cyan be shown (cf. proof of Theorem 4) that the right-hand side of this equation is equal to
AT (R,

9
R0y SRR RN TSy
) t. Qi) i 3 ..\r’ A r;.
R L

D
‘ 2 ‘.'1’ Pty ﬁ‘g‘lh‘l‘!. : Iv'.l‘i.‘ [ Q’f ‘tﬁ“'l“lh”h“:.’ i..‘i h"‘@ .':'.'l.\.l‘ IR
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,‘;_;i' Finally, consider the coding problems that result from the imposition of multiple constraints. Sup-
9:‘:\' pose our code must satisfy some constraint, say A, for some constant Py, and another constraint 4’ for
..,:s some constant P; # Pr. Denote this joint constraint by 44°. Similarly, one may define a double con-
:::l:.‘ straint, BB’, on jamming vectors. It is easily checked that the achievable regions for these more com-
b plex coding problems can be constructed from the regions defined by Theorems 1 to 4 according to the
SN following simple rules:t

SUeH

¢

Y ﬁ'.l

i‘h.: RAA'|B=RA|B N RA'lB (2233)
f‘!c Riise=Rq18 U R g, (2.23b)
Y or, in terms of A-capacities:

A3

2; Cawig W) =min {Cy 15 W), Coip W) (2.24a)
é‘. 3 Cuipg(A) =max {Cq15(\), Cq15 W)}, (2.24b)
+ ‘l

3. THE PROOFS OF THEOREMS 1 TO 4:

JN
gt . . . . . . .
B %, For any input power constraint A, and jamming power constraint B, define the region
a2 - >
J'.?:, Rys={RMNIOKRKCygW), 0K A< 1),
Nl
: ' where C",, 18 (\) is the formula given in the theorem of Section 2 corresponding to the constraints A | B.
}:_ Our goal in this section is to prove that
- .
h;: Ry =Ryis,
g
‘ for each pair of constraints A | B. Each proof will consist of two parts: a forward part
‘l‘: (a):RA|BDRAIB‘
-
_ ~:5,: and a strong converse
'u.,‘_ (b):RllBC RAIB'
!
At . L . - .
el At this point, it is convenient to present some definitions and results that we use in the proofs
:" . below. By the standard (n, M) random code, we mean a random code
x A
:.: Cr, = (v A%, .. (v, A% ), 3.0
By
) constructed in the following way.
[rr (1) The M random codewords, {v},...,v}]), are a collection of mutually independent,
f—;: random n-vectors, each of which is uniformly distributed on the n-sphere of radius Vn ;
b i.e., the probability that v lies within a certain region on the surface of this n-sphere is
,"::'-: proportional to the surface area (or equivalenlly, solid angle) of this region.
s (2) The random decoding sets, {41 M . are defined by a strict minimum Euclidean distance
N rule, viz.,
Chalt]
¢
AT — .
i Ar=[yeR"||ly-v < |y-v?! |, forall k=i 1S k<M)}, 3.2)
oY
RN
>
AN
‘ 81
I S
,’ > 1t s unknown whether the region R 4401 gge can be similarly decomposed
e,
0t
«
:u"‘ » 10
[Nl G N I TR A P I e T A w L e C_e N, e m Y e . . R
L P AT N .':-' N AR, ‘o _-\_~ AT e Pl WA R e e I RO AN _“. LR LS r\’.‘ Wy _-. LSk ";‘\.'L\ AN S
“ WO SIS > ):' _:.?". et _.:-.",\ -.i'- DR A ‘.'_ = ‘i"(' - .cl' S ""s.:'" \'-'J‘:'::i‘-
b * 4‘ . .( - ! X - .l

"l'i a0
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,. where | - | denotes the usual Euclidian norm on R”. If a tie occurs, the receiver draws no
‘,.: conclusion about the transmitted message (and hence an error occurs).{
Y.
ey - .
" We make several observations about the random code, C;. First, the codewords of C} are cleariy
X Pl-admusible for P; = 1; in fact, Eq. (2.4) is satisfied with equality (with probability one). Second,
) since all codewords have equal length (or power), each decoding set in Eq. (3.2) is a "flat-sided” cone
'_t;s' with vertex at the origin. It follows that the sets {A* M | are also minimum distance decoding sets for
. every codeword set of the form {VP v}, ...,vP v}), where P > 0. Third, Shannon [10] has con-
::n sidered the use of this random code on the discrete-time, additive Gaussian noise channel and has
P obtained the following result: There exists functions, say K (R,P) and (R,P), both positive so long as
' _ 1 1
-~ R=—log2M<5log2(l+P). 3.3
158 n
s
o~ such thatt
I —
:‘.'5 PrivPv*+n*€d*) < K(R.,P)exp|—nE(R.,P)} (3.4)
o
holds for all 1 < / < M and n 2 |, where, here and throughout this section, n* denotes a vector of
i i.i.d. N (0,1) random variables. Furthermore, K (R, P) and E (R, P) can be selected so that
:;-' (a) K (- ,P), —E (- ,P) are increasing, and (3.5a)
o
k.- (b) K (R,-),—E (R ,-) are decreasing (3.5b)
%y
a R
# for all R and P satisfying Eq. (3.3). Finally, C* has the useful properties summarized in the following
. lemma whose proof is contained in Appendix A.
o’
o - .
.-.: Lemma 1: Let C; be the standard random code ( Eq. (3.1)); let s be any n-vector, and let / and [ be
. any pair of real numbers satisfying / > / 2 0. Lel »* be a random variable that is uniformly dis-
tributed on the unit n-sphere, and that is independent of the codewords {v}],...,v}). Then
ﬁ; (@ Pr{vi+nr+s€ At} = Privi+qt+|sle® € at),
b
*u " _ _
>, BYPri{vi+nt+ilew® € AY) S Privi+ 9+ lw® € A7) .
> Remark: Lemma 1, part (a) states that Pr{v} + n* + s € At} depends only on the magnitude of s, and
_'f not on its orientation; part (b) implies that it is an increasing function of this magnitude.
-
2 A second useful lemma is given below; its proof is contained in Appendix B.

Lemma 2: Let {n*)™ | be a sequence of i.i.d. random variables with common marginal distribution N
o (0,1). Thenforall0 € e < 1,

~U
R
)
) 1 “ 2 n €2
N @:Pri{|= ¥ n—-1|2€} <exp{-

b n = 12
"'. ¢ We note that the decoding sets (A1 M | may be suboptimal (in the minimax sense) decision regions for the loss functions

_‘.' IENT 2 hand A A} For proving coding theorems this will not matter: in the forward part of the proofs we can certainly |
’ bound the crror probability of the optimal decoders above by that obtained using suboptimal decoding sets; in the converse part, |
: ) we van hound the worst-vase error probability helow by that obtiined using (block) pulsed. Giussian jamming signals, for which ’
o . the sets. HA, 0 Y are o umformly most powerful decision rule
& t We have presented Shannon’s result i form that s different from the original statement in Ret 10, but which is convenient

R tor the proots of the present secion Qur form can be obtuned from Shannon™s "firm” upper bound m Rel 10 by making the
> substiution imdicated in the footnote to page 16 of Gallager [HT] and simplifying the resulting bound
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N for all n = ng(e), where ng (€) is a bounded function of e alone, andt
®: Py~ Tzl > Prlal>1) >,
i=1
forall n 2 1.
We also require an Arimoto-style strong converse [12] for the discrete-time, additive Gaussian
noise channel with peak input power constraint and the average probability of error concept. Let
*={(u},D}),....(uy. DY)}
be any Pl-admissible (n, M) random code with P; = P. There exist functions, say K'(R, P) and
E' (R, P), which are both positive whenever
3 R = l" log, M > —;—logz (1+P), 3.6)
: such that
1 i . s c s [ '
: M -prl“,‘*’n €D*) 21— K' (R.,P)exp | —nE' (R.P)} 3.7
.
holds for all » = 1. (Note that any lower bound on the average error probability is a fortiori a lower
bound to the maximum probability of error.) Furthermore, K' (R, P) and E' (R, P) can be selected
so that
N (a) K’ (-.P), —E' (-,P) are increasing, and (3.8a)
(b) K' (R,-), —E' (R,") are decreasing (3.8b)
)
' for all R and P that satisfy Eq. (3.6). The proof of this result is very similar to the derivation in Sec-
: tion VI of Ref. 10; we therefore omit it.
{
) We now present a Lemma that forms the kernel of the strong converses to Theorems 3 and 4.
This Lemma is of independent interest because it gives a tight lower bound on the average error proba-
3y bility of any code when used on a Gaussian channel in terms of the code’s power distribution.
t
Define for any u = (u,,...,u,) € R” the quantity
: P(uw) = 2 u, . (3.9
ji=1
&
i and for any random code C?%, let U* (C2) be the random variable that is uniformly distributed on the
{ set {uf,...,u% } of codewords of C3.
1
r. Lemma 3: Let C? be any (n, M) random code and J* be any nonnegative random variable that is
independent of C}. Then for all ¢ > 0 the following holds:
"
"
,:: 2Pr{u"’+ne+\ll‘ € D*}
.l. i=1
R}
4: 2 Pr [P(U(C:))<(4R‘2'-l)(N,+J‘)I — v (€), (3.10)
‘i
;;:l +By the Central Limit Theorem, the left-most expression in Lemma 2(b) approximates 1/2 for large n.
,'7

y 12

. IP“H )
;;’«.‘.-, e o M ':" ""‘“

l ! '
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X
“. where
( y,(€) = K'(R~€,48 "2 — 1)exp{—nE' (R — e, 4% "2 —-1)} —2-n¢, 3.11)
2
R N Remarks. Observe that y, (¢) depends only on n, €, and R and is independent of the random code and
et the jamming power. Also, for all € > 0, y, (¢) — 0 exponentially fast.

__

.

i Proof of Lemma 3. To prove the lemma, fix € > 0, and let C, = {(u,, D)),..., (uy,Dy)} be any
\‘*i realization of C%. Define the set
i

R SACN=(1<i<SMIPU) < (@R 2—1)(N, +1)), (3.12)
""’ K and further definet
RN N (Cpd) = #S.(C, 0). (3.13)
b )
’!':. It is immediate that
~ E{NA(C2IN )} =MPr{PUCY)) < (4R -2 - 1)(N, +J) ). (3.14)
L _ .
';.p: The average error probability of that subcode of C, that consists of those codewords with indexes in
: s S, (C,.J) can be bounded below by the strong converse (cf. Eq. (3.7) ) for the Gaussian channel ¢
) W

: i _

_ Priut+n2+JIn*eD?|C:=C,)}
- NG s mid :

25

o 21-K (R, 48 "2 —1)exp| nE' (R, 4% "2 - 1) (3.15)
":"-': provided that

log, (N (C,.J))

‘o R, = =22 ) SR -2e. (3.16)

- ,N . n
Ea
: :-'; In particular, the following holds for all C,, J, €, and R: §
A%

] | _

¥ _ Priur+qn*+JIn*eD|Ct=C,)
;. ' NG D) s';(".”
ﬂ'-::{

R32 > (1= K (R 4R "2~ 1) exp —nE' (R, 4%~ 2% = 1)) Iig r ) 5 - (R,)

2 (1-B,(R.e)) lig g, 2r-a(R,), .17

b

_"»:: where

B,(R.e) =K (R—-¢4% 22— l)exp| —nE' (R —€,48 22— 1) }.

-~

W

‘ -
';- + The quantity # 4 denotes the cardinality of the set A

KA t We nterpret the left-hand expression in kg (3.15) as zero if ((,.J) = 0

A 51, ¢ _Jlxed

o AX):O\'GA-‘

)

)

L}
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«:‘:‘ The last step above is a consequence of Eqgs. (3.16) and (3.8a). Using Eq. (3.17), we obtain the desired
;*'::: lower bound to the average error probability of C,:
A
"",f' }:4 2Pr[u’+ne+\/—n ED’|C’—C}
=1
:"-{‘ 1 =
e > T Plurtmi+VIgtedrici=c,)
:,;g i€5,(Cp D)
:“z& N, (C,.])
> —M— (1= B,(R,&)) lig, g, >r-c (Ra)

e
e
[ N (C,.J) N (C,.J)

&l - B, (R.€) lig (g, >R -c (Ra)
*i.g M M n n
B N(C, )
, -—L*A;—'—lmnm,,d—.l(&)
~;o.|'l
)
e N A(Co D)
N Jeitn? _ e
.:4:::: > ™ B, (R . e) -2
9.‘_‘.'
. N (C,.J)
A‘,, = ——M—‘ —~ Yna (() . (3'8)
558

el
K v'; veraging Eq. (3. over the distributions of C% an and using Eq. (3.14), we obtain Eq. (3.10),
o7, A ing Eq. (3.18) he distributi f C} and J* and using Eq. (3.14) btain Eq. (3.10)
i completing the proof.
(W)
‘;:, : Proof of Theorem 1:
::‘:\' (a):R SR
; a): .
:" k: PI\PI PI\PJ
b Let R, nonnegative, be given and set M, =|2"®].+ Define a sequence of (n, M,) random codes, say
" {C*,} .\, in the following way:
et
g;g Co={ i AD..... (i A% ), (3.19)
¥
o)
l"
"’::: * __ - . - - . : ( . e .
LAY where u*=/P; v*, and { (v, 4D,.... (v M,,»AM,,” is the standard (n, M,) random code, defined in
. Eq. (3.1). Itis easily verified that C*, satisfies Pl for each n 2 1. We further claim that if
:} q R < Clr/ 1P > (3.20)

A
ir'l then there is a positive sequence { v, .2, such that
!
'::‘L.

) AWy <y, (3.21)
e .
:.’:'. and y, — 0 as n — + oo_ If true, this would clearly imply that any R.A) in Ry, is achicvable PI|PJ,
»::" and thus prove (a).
:‘l::"
A
. -
H\: R tl x| denotes the integer such thul x ~ 1 < # € «
pt
Y 14
*.H .‘ figdod

l
) ’;‘uuu‘a ’l’
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e

To establish this claim, suppose that Eq. (3.20) is true; let w * be an independent random variable
that is uniformly distributed on the unit n-sphere and define

o, (D= Priut+n+iw* €A} (3.22)

-
[
-

for any real number / 2 0. (Clearly, o, (-) does not depend on i.) Let s* be any jamming sequence

;{:‘.}; that satisfies PJ; i.e., |s*| < +/nP,, with probability one. The error probability incurred by s* can be
N bounded in the following way:
47
0% Priut+n:+s* € A= Eo, (s*]) € o, (JaP}) . (3.23)
"' The justification of these steps is as follows: (a) is a consequence of Lemma 1(a) and the definition of
ot u’ (b) results from PJ and Lemma 1(b). Taking the supremum of Eq. (3.23) over all
‘2 1 € i €M and s* satisfying PJ, we obtain the bound
'
N
N AP (CY) < o, (P). (3.24)
0
‘
3] It only remains to estimate the right-hand expression in Eq. (3.24); this is easily done by relating it to
:{’, the error probability for the ordinary Gaussian channel. Let \/P;n* denote a vector of i.i.d. N(0,P))
. ;{ random variables, and let f () denote the probability density function of the random variable
!_'_.I. m* =y/P,1n* 1. Itis easy to show that
Priut+qi+ VP a e =f o,fa. (3.25)
.E"_: Using Lemma 1(b) again, we find
.‘\' fm
* ()',,(I)f(l)dl Priu* +n* + /P *c Z.
- 7o (1P < "J"-P’ YRR ' ’Prz’lpn’l >’l"} ) (3.26)
, =
Y Ve
L)
:!" We now invoke Eq. (3.4) (compare Egs. (3.20) and (3.3)) to bound the numerator of Eq. (3.26) by
)
: K(R,P)exp{—nE(R.P)) 3.27
.
:C:» where
O
e
- =_ P 3.28
a. Py = N.+ P /b (3.28)
S .
¢ for all » > 0. From Lemma 2(b), we know that the denominator of Eq. (3.26) is not less than 1/4;
{i‘ therefore, combining Egs. (3.26) and (3.24), we conclude that
:}i: A (C2) S 4K (R.P) expl— nE(R.P) ) (3.29)
K for all # 2 1. The right-hand side tends to zero as n — +oo, as desired. This completes the proof of
;.'t the forward part of Theorem 1.
a:t, .
N (b):Rpyipy © Rppypy.
1'5
‘\‘]
'.
3
¢
1]
D 15
Wy
;b
‘e AT M A A A \',‘ . ’\'&""‘"‘-’-'\ RS R RAN T Ca
* Ny "'u)': :-(‘:',-l‘,_" -f'-, ."’ ‘. . ,o... -(-\ \.1_,)' W"'M ’.{r.‘f,'c:"-s -.:\ RO .-: '}@\,\y.\a o) "t

g
D() 2 .. e )
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:c:: Let € > 0, and suppose that R = Cp|p; + €. We claim that there exists a positive sequence {yn};". |
it such that
;‘l:'
"’Q .
et AP(C) 21—y, (3.30)
"f q is satisfied for all Pl-admissible (n,M) random codes, C;, where R = (1/n)log; M, and
.: 3 vy, — 0as n — +eo. Clearly, (b) follows from Eq. (3.30).
§
) 0
::: 1 To prove the claim, fix ¢ > 0 and take § > 0 small enough so that
K MN
g CP[|p1<llog2 l+—L— <Cp/|pj+€<R, 3.31)
N 2 N, + P,/ (1+®)
b
N and let C2 ={(u$,DP...., (u},D%)) be any (n, M) random code satisfying PI. If the jamming
t!:k sequence s* were i.i.d. N (0,P,/(1 + 8)) random variables, then by Eq. (3.7) we know that
max Prlu*+n*+ P,/ +8) n*€D?)
‘::ﬁo 1Sis M
:ﬁ, 21— K' (R,Py;y) expl —nE' (R,P,,5) ) (33
,ﬁ.'
o where P, is as defined in Eq. (3.28). Unfortunately, \/P,/(1 + 8) n* does not satisfy PJ. theretore.
. we define a truncated noise process n }(8) as follows:
7
b \/P//(1+8n vt S VAl +8)
AT 718 = (3 3%
) |'n. In*l 2 Va(l+8),
2;"': so that o *(8) is clearly admissible under PJ. Now
:,:’::’ Priut+ 92 +~/P/(1+08)n* €D*)
ol = Pr(ut+ i+ VRO + 00 |In* | S VAT 8) I x Pr {In*| < Va(l + 8
‘;"'. + Pr{ur+xn2+JP/(0+8)n* > Vn(T+8) I x Prilng*l>VnQ +8)
X
:“*' SPriut+nt+nr@eD)+Pr{lnl>vVn(1+8 ). (3 34)
o
::;a: From Lemma 2(a), the right-most expression in Eq. (3.34) is bounded above by exp { —n 8°/12} for
e all n 2 nyg(8). Taking the maximum of Eq. (3.34) over all i and substituting Eq. (3.32), we conclude
< that
A _
_Jﬂ: AP 2 | max Priu*+n?+n2) € D*) (3.35)
u::.
565 21— K (R.Py)expl—nE' (RPs) ) —expl - ﬁ 8.
R .
'{:-4' for all n 2 ny(8) and all § satisfying Eq. (3.31). The right-hand expression in Eq. (3.35) tends to unity
194 as n increases uniformly over all codes of rate R, which is the desired result. This completes the proof
| L]
j:.; of the strong converse to Theorem 1.
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p Proof of Theorem 2:
P
o
4 (a): Rpyiay DIRpy
We retain the notation and results of part (a) of the proof of Theorem 1. Let R, nonnegative, be
given, set M, = [2°%] . and let {C2);°. | be the sequence of Pl-admissible (n,M,) random codes intro-
duced in Eq. (3.19). We claim that there exists a positive sequence {y,}°_ | so that
AV C) SAPTYR) 4y, (3.36)
and y, — 0; this implies (a).
To prove Eq. (3.36), let s* be any jamming sequence that satisfies AJ and let A be such that
0 < A € 1. As demonstrated in part (a) of the proof of Theorem 1 (cf. Eq. (3.29)), if
1 Py
< = — | = C . 3.37
R 7 ]0g2 1+ N‘,+PJ/A ) p[]Aj(A) ( )
then foreach | < j €M,
Pr { ut+qt+s* €Al 1 Y 2 < P,/Al
i=1
< 4K (R,P) exp{—nE(R,P) }, (3.38)
where P, ‘s defined in Eq. (3.28). Since s* satisfies AJ, Chebyshev’s inequality (e.g. Ref. 13) yields
,ll"zs,.-2>P,/x]<A. (3.39)
i=1
Using Eqgs. (3.38) and (3.39), we can bound above the error probability incurred by any s* satisfying
Al in the following way: For any A such that Eq. (3.37) holds, we have
Priut+nd+s*€Ar)
—- n n
= Pr 'u,‘+n;+s’€A,‘ 1 p3 s*? g P,/AlPr - 3 s*2 < P,/)\]
i=1 =1
- 1 n 1 n
+Priut+nl+st €A — Y s*P< P/} Pr =~ Y %2> P/
i=1 =1
<A +4K(R.P)expl—nE(R,P)}. (3.40)
Let {r,}"., be any positive sequence such that A, > A?14/(R) (so that Eq. (3.37) holds) and
A, — AP (R) slowly enough so that
K(R,P,\")expl—nE(R.PM) }]—o0. (3.41)
Clearly, such a sequence exists. Taking the supremum of Eq. (3.40) over all i and AJ-admissible s°*
and substituting A,. we then conclude that
AC) <A, +4K(RP, Yexp | —nE(RP,) . (3.42)
17
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:'::Q: The right-hand side of Eq. (3.42) tends to A*/'4/ (R) as n increases, proving Eq. (3.36) and (a). This
BN concludes the proof of the forward part of Theorem 2.

Lt . ~
N (6): Rpyias CRpppay-
s We now prove that there exists a positive sequence {y,}.°. | so that y, — 0 as n — oo and

o A(CE) 2 AP R) — y, (3.43)

":::' is satisfied for all Pl-admissible (n,M) random codcs, where R = (1/n) log; M, (b) follows from Eq.
(3.43).

First, let A be such that 0 < A < ). Suppose that a "pulsed" jamming sequence, say s;, is

1
At defined to be
0N
'S'J‘, sy =JP/N\Z: 9" (3.44)
8 where n* is a n-vector of i.i.d. N (0,1) random variables, and Z} is a Bernoulli random variable that is
“‘e{ independent of * and distributed as follows:
."{)' PriZy=1)=1-Pr{Z}=0}=\. (3.45)
Ay
1!
It is easy 1o verify that s} satisfies AJforal0 < A < landalin 2 1.
2 .
P 3 Suppose now that A is such that
}
j:t‘ R > -Llog; I+ _“PT_'— = Cp”,u (A), (3.46)
x_ 2 N' + PJ/A
i then the error probability of C*, can be bounded below in the following way:
Y,
3 3 » > » » * .
o AV A(CY) ,lgm'_aéul’r {u*+ 9! +sreD?)
O™
. (F.1] —_
;;::' }Irsn?i(MPrlu,'+-q:+s:€D,’ Z:=1)Pr (Z}=1)
)
)
.'. (c) —
::::': = (I<ma3MPr lu*+ 92+ /P/An*€D*))
;;’Q‘.. €1 €
(d)
% 2A(1 =K (R,P)expl—nE" (R,P,)}), 3.47)
el
i
;.r. where P, is defined in Eq. (3.28). These steps are justified in the following way: (a) is an immediate
f\‘. . consequence of the definition of A ¥ () . (b) follows from the law of total probability: {c) follows from
¥ Eqgs. (3.44) and (3.45); and (d) is a consequence of Eqs. (3.46) and (3.7).
T Let {a,), | be any positive sequence such that A, < AP (R) (so that Eq. (3.46) is satisficd)
e and A, — A" Y (R) slowly enough so that
LYy
=X K'(R,P“)cxp{—nE'(R,PM)l-()‘
':;. l.
fs:.‘c
':o"l (4
PO 18
’\ n"'-
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Substitution of A, into Eq. (3.47) yields
AMIA(CH) 2 A, (1= K((R,A, ) exp | —nE(R. 4, }) (3.48)

= API[AJ (R) — Y

where {y,},°_ | has the desired properties. This completes the proof of the strong converse to Theorem
2.

Proof of Theorem 3:
@: Ryips O Rypips.

Let R. nonnegative, be given and set M, =[2"’]. For any 0 < A < 1, define a sequence of
(n.M,) random codes, say {C2(A)}_ |, in the following way:

G ={ @i, 4D, ... (i W), 4% ) ), (3.49)

where

uA) = P /A-N)Zt,v!, (3.50)

Zt_, is a Bernoulli random variable independent of v} such that
Prizy ., =1=1-Pr{Z}_,=0}=1-1, (3.51)

and C* ={ (v}, 4D, ..., (v, A% ) is the standard (n, M,) random code, as in Eq. (3.1). It is easy

to verify that C%(A) satisfies Al for all 0 < A < 1, and all n. We further claim that there exists posi-
tive sequences {A,}°. ; and {y,};°- | such that

AP(CN)) S AMIPL(R) 4y, (3.52)

and y, — 0, this implies (a).

The proof of this claim is in the spirit as the converse to Theorem 2, so we shall be brief. Lets*
be any PJ-admissible jamming signal, and suppose A is such that

R < Cqy1ps . (3.53)

We can then bound the error probability above as follows:

Pr{u*\) +n2+s*€Ar)

=Pr{utN) 4+t +sr€ar|zy,=0)Pr{2Zt,=0)

+Prlut) 4+t +st €Atz =1VpP {2} ,=1)

()

SA+Pr{JPJO=Nv +p* +s* €4

(¥ 3]

SA+4KR.PYexpl— nE(R P, (3.54)

19
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HUGHES AND NARAYAN

where

P/ (1=2)

P N, + P, &)

The justification of these steps is as follows: (a) resulis when Eq. (3.51) is substituted into the preced-
ing equation, and the first conditional probability is bounded above by one; (b) follows from Egs.
(3.53) and (3.29) and the fact that s* satisfies PJ.

Now let {x,}- | be any positive sequence such that x, < A"/ (R), x, —\"'*(R), and

K(R.P") exp{—nE(R.P") ) —0.

Taking the supremum of Eq. (3.54) over all i and PJ-admissibie s* and substituting A,. we find that

AP (CEN)) S A, +4K(R.P ) exp [ — nE(R,P') )
= AIP(R) +y,, (3.56)

where {y, },°. | has the desired properties. This completes the proof of the forward part of Theorem 3.

(0): Ry;1p) C Ryyppy.
We now prove that a positive sequence {y,},°_ | exists, which depends only on R, so that y, — 0 and

A (e = AP (RY -, (3.57)

is satisfied for all Al-admissible (n,M) random codes, where R = (1/n) log, M this implies (b).

To prove this, let

Cr=1{(u*,D*), ..., (u*y, D%y |

be any Al-admissible (n,M) random code. Fix & > 0, and let n*(8) be the PJ-admissible jamming
sequence introduced in Eq. (3.33). As in part (b) of the proof of Theorem 2, it is easy to show that

AP(CH) 2 max Priur+n+9%(8)€eD ) (3.58)
1Sis M
» » - n n
P IénlastPr {ur+ 92 +/P /(1 +8)n*€D,) - expl— ES’}.

We now use Lemma 3 to lower bound the first expression on the right-hand side of Eq. (3.58):

max Priu’+ nt+/P/(1+8)n*€D,

s M

M

2 LM Y Priur+ g +/P/(1 +5)n* € D*)

¢ =1

2 Pr{PUNCY)) < @R-2—1)(N, + P,/(1+8))) —y, (), (3.59)




P

NRL REPORT 8971

where U*(-) is defined just prior 1o Lemma 3, and vy, (€) is as defined in Eq. (3.11). Recall the defini-
tion of A" (R) in Eq. (2.19); when we want to exhibit the dependence of this function on P,. we
use the notation A" (R,P,). Since C? satisfies Al, it is true that EP(U(C2)) < P,. Using this
and Chebysheff’s inequality, we can easily show that

Pr{ P(USC)) < (4K "2 —1 ) (N, + P,/(1 +5)) }
> AYIPIR —2¢,P/ (1 +8)). (3.60)

Therefore, combining Eqs. (3.58), (3.59), and (3.60), we conclude that for alle > 0 and 8 > 0,

A (CE) 2 AP (R = 26, P/ (1 +8)) — exp [—%82} — y.(e). (3.61)

Note that the right-hand of Eq. (3.61) depends on C} only through the rate R. Now choose {8,};°. |
both depending only on R and decreasing to zero slowly enough so that the last two terms in the right-
hand of Eq. (3.61) converge to zero. The right-hand expression then tends to A4/ !#(R), as desired.
This completes the proof of the strong converse to Theorem 3.

Proof of Theorem 4:
(@: Ry 4 2 ﬁu!u-

For any nonnegative R, set M, =|2"%] . Fix € > 0 and define a sequence of Al-admissible
(n, M,) random codes, say

Chle) = ((ut(e), 4D, ... (u}y (), 4% )}, (3.62)

where

ute) =/ 3ve, (3.63)

P! (e) is a nonnegative random variable, independent of v* that satisfies E P§(e) < Pr, and whose dis-

. . . . - M, . .
tribution will be given below; and C* = {(v* A*) ), 7, is the standard (n, M,) random code. It is easy
to verify that C?2(e) satisfies Al for ull 0 € A < 1, and all n. We claim that there are positive
sequences le,} ., and ly,}°_ | such that

AMACHE,)) S ATA(R) + y,, (3.64)

and y, — 0. this implies (a).

In proving this claim, we assume that N, > 0; the proof if N, = 0 is similar. We refer the reader
to the Theorem of Appendix C, and adopt the notation used there. A consequence of this theorem (cf.
Eq. (C4) ) is that if X, has the distribution Eq. (C28b) and v, is as defined in Eq. (C28a), then

PriXo2Y+cl2w (3.65)

holds for all nonnegative random variables Y that satisfy EY < b.
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Now make the following substitutions:

Py
" Gy PP N

and define P3(e) in Eq. (3.63) by
P:(E) = (4R+¢ - ])X(}.

With these substitutions, it is easy to verify that

v0=l—/\'“'”“(R+e).

> From Eq. (3.65), it follows that if J* is any nonnegative random variable that satisfies EJ* < P,

then

PriPiie) < (4R* — D(N, + )} S AV (R + ). (3.66)

Let s* be any AJ-admissible jamming sequence and define J* = [s*{? (so that EJ* < = P, ),

and set §* = $*/VJ* when J* > 0 and $* = 0 otherwise (so that |$*| < 1 as). In the proof of

Theorem 1 (cf. Eq. (3.29)) we showed that if |§*] < 1 a.s. and P and J are positive constants, then

PriJP(vr+nr +JJ 5 €Ar| Pie) =P J =]}

< 4K (R.P)Yexp | —nE(R.P) Y}, (3.67)
for all n 2 1, provided that
p = N(":LJ > (4% — 1)
In particular, if
N,.’:L - > @k, (3.68)

then using Eq. (3.5b) we can further upper bound the right-hand side of Eq. (3.67) by
B,(R.e) =4K (RAR* — 1) exp|— nE(R4R* — 1)) (3.69)

Note that B, (R.e) —0 for all ¢ > 0. Now define
B, (R.e) P> (4R — [) (N, +J)

hy (PJ) = | otherwise

(3.70)

so that h, (P J) is an upper bound on Eq. (3.67) for all P. J, and n. Avecraging this bound over the
distributions of (% (e) and J*, we find that

Priute) +nr+s*€Ar) = Pr{JPlelve+q: +JI*§* €A%
< Eh, (P3e).J*)
B,(R.e)+ (1 —B, (R, e&)) PriPile) < (48" — 1) (N +J*))

I

N

B,(R.e) + """ (R +¢), 3.7

22
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where the last inequality follows from Eq. (3.66).
AJ-admissible s*, we obtain the bound

A (Cre)) €

Taking the supremum of Eq. (3.71) over all i and

B, (R,&) + N4 (R +¢), (3.72)

foralle > 0, n > 1. The claim Eq. (3.64) now follows by choosing {€,}°_ | to decrease to zero slowly
enough so that B, (R.e,) — 0; since A*''4/(:) is continuous, the right-hand term then tends to
A4 (R), as desired. ThlS completes the proof of the forward part of Theorem 4.

) Ryjyas € Ryjjase
We now prove that there is a positive sequence {y,} ;- | that depends only on R, so that y, — 0 and

A (CH 2 MY (R) -y, (3.73)

is satisfied for any Al-admissible (n, M) random code C%, where R = (1/n) log, M, this implies (b).

Fix € > 0. As in part (a) of the proof of Theorem 4, we invoke the Theorem of Appendix C
This Theorem implies that if Y, has the distribution Eq. (C28¢), and v, is as defined in Eq. (C28a),
then

PriX 2 Yy+cl <y 3.749)
holds for all nonnegative random variables X that satisfy EX < a. Making the substitution
Pr b="P N
a=——->———,b=P,c= .
(4R-2 — 1) ! ‘
and defining
‘16(6) E YO\
P*= (4" 2_ 1) x,
we obtain that
vo=1- A" (R = 2¢)
and
PriP* < (4R "2 _ 1) (N, +J3e)) )} =AYV (R - 2¢) (3.75)
holds for all P* satistying
EP* £ P (3.76)
Note that \/./(,'(651)’ is Al-admissible for all e > 0.
23
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2 Let C? be any (n, M) random code. We may bound the error probability of this code below as
;s follows:
:4 A 2 > max Priut+y®+/J3e)n* € D)
A R/ \M
. >lM T Prluttn:+ VIfen® ¢ B;)
D % -
Al a
& > PriP(US(C)) < (4K 2 1) (N, + J3e)) ) — ~ ¥a (&)
u (5)
X 2 A (R —2¢) -y, (e), (3.77)
':p where vy, (¢) is defined in Eq. (3.11). The justification of these steps is as follows: (a) results by apply-
9 ing Lemma 3; (b) follows from Eq. (3.75) and the fact that EP (U*(C})) < Pr. Now choose a
::0 decreasing sequence of positive numbers, [e,}’> |, such that €, — O slowly enough so that
0

) va (e,) — 0. Substituting €, into the right-hand side of Eq. (3.77), we obtain an expression that tends
) to A4/ (R) uniformly for all Al-admissible codes of rate R, as desired. This completes the proof of
the strong converse to Theorem 4.

f
>
i 4. DISCUSSION
»
L) . . . . . .
" Our results show that the asymptotic behavior of GAVCs is qualitatively different from that of
& discrete AVC: whereas the latter always have a random coding capacity (cf. Blackwell er al [1]), the
ay former generally have no capacity (except in the case Pl | P}). This is a direct consequence of the
k) N imposition of power constraints of the average type.
»
9 ; It remains to determine, if they exist, the corresponding A-capacities for the GAVC when the
b transmitter is restricted to deterministic codes (i.e., those of the form Eq. (2.2)). For the discrete AVC,
. deterministic coding capacities are known in many special cases. Ahlswede [14], using the average pro-
e bability of error concept, has shown that the capacity of the discrete AVC is either equal to the random
: { coding capacity, or eise it is zero.t This method apparently fails for the GAVC, owing to the presence
,:-_v of a cost structure on the allowable channels and encoders.
'
¢ The coding problems of Section 2 lend themselves to an alternative game theoretic formulation.
Corresponding to each GAVC, say A | B, there is a family of two-player, zero-sum games (cf. Blackwell
R and Girshik [15]) defined as follows. Fix the blocklength # and the source rate R. The transmitter’s
'! (resp. jammer’s) allowable strategies consist of all (n,2"®) random codes, C? (resp. all R” -valued ran-
B, dom vectors, s*) that satisfy the power constraint A (resp. B). The payoff when the jammer plays s*
.),: and the transmitter plays C; is the error probability A (C},s*), defined in Eq. (2.8). The jammer
e wants to maximize this probability; the transmitter wants to minimize it. Therefore, they seek stra-
. tegies that attain the outer extrema in the following programs:
':-: Transmitter’s Program: v, = inf sup A (C%.s*), (4.1a)
L.r, <ot
.0 Jammer's Program: y, = sup inf A (C%,s*), (4.1b)
._:‘. LR
e where the extrema are taken over all allowable s* and C%. An optimal strategy for the transmitter (resp.
"." jammer), if it exists, is one that attains the outer extrema in the transmitter’s (resp. jammer’s) pro-
s, gram. For any € > 0, e-optimal strategies, C}, and s:. are allowable strategies for which
%
Y supA(C S*) < v, +e, 4.2)
ne n
4
Kn. inf A (C380) > v, — €, (4.3)
n
-
K 2‘ t At present, no simple, general method is known for deciding between these two alternatives
. -
Wy
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where the extrema are taken over all allowable s* and C}. It is always true that v, < v, . if v, = v,,
then the game is said to have a value: v,, = v, = v,.

Equation (4.1a) defines a sequence (in n) of communications games. Basar and Wu [6] have
considered games of this type for a memoryless Gaussian source and for a different cost function, viz.,
mean-square distortion. For each n, they obtain the value of the game and characterize saddle-point
strategies for each player. In contrast, we can say little about each game in the sequence; we can, how-
ever, say a great deal about the asymprotic behavior of the sequence.

Implicit in the proofs of Theorems 1 to 4 is the following result: The sequences
{v,}°_ 1 and (pn)2 | converge, and
lim v,= lim »,=A*"'8(R) (4.4)

n — +oo n — too

holds for every R and every pair of constraints A | B. Thus the sequence of games has an "asymptotic
value" equal to A48 (R). Furthermore, for all € > 0, there exists, for all sufficiently large n, e-
optimal strategies for both transmitter and jammer. (Such strategies for the transmitter are explicitly
constructed in the forward parts of the proofs in Section 3; jamming strategies are constructed in the
converse parts.)

Some authors further constrain the jammer to signals of the form

=(ztnt,....z22n%), 4.5)
where {n*~, isii.d. N(0,1) and {z*, is a sequence of random variables independent of {n ", and
subject only to the average power constramt

l n
E{=— Y 221 <P
ni

We call this constraint AJG, and use the notation GAVC A | AJG to refer to the channel with input
constraint A and jamming power constraint AJG. Since AJG is more restrictive than AJ, we must have
R, O Ry However, the jamming strategies constructed in the converses to Theorems 2 and 4
are all of the form Eq. (4.5), so that we must have R ;| 4, = R, | and consequently

A6 (R) = A4 (R) . (4.6)

Thus our results extend to Gaussian jammers.

It is especially interesting that the achievable regions of Theorems 2 to 4 are not determined
solely by a simple optimization program involving mutual information, as is usually the case in informa-
tion theory. McEliece and Stark [8] have modeled the conflict between transmitter and jammer, when
coding is used, by a two-player, zero-sum game with murual information as the payoff function. As an
example, they considered the channel that we have called the GAVC Al | AJ (for the special case
N, = 0) and obtained the following results: Optimal transmission strategies for both players are i.i.d
Gaussian sequences of maximum power and of length n, and the value (or optimal payoff) is

P
1+ L

2 log
2 P,

2
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1:::;' If the value of the game considered by McEliece-Stark is actually the capacity of the channel (the
: ": authors do not assert that it is), then it carries the following interpretation: when » is large and

::;f:. .

i 1 T

.,e:!.c R < 5log2 1+ —E ,

toht . . . .

: 3 then A"/ (C%) = 0 is possibie. In contrast, however, note that the e-optimal strategies for the game
"r"- Al | AJ in Eq. (4.1a) (cf. proof of Theorem 4) are not memoryless, and the error probability of any
Loes positive rate code is bounded away from zero. It is of considerable interest that these two apparently
::' related games lead to such different results.

h)

_— An explanation of this disparity between predictions of these two games lies in the fact that
: mutual information takes on operational significance only when the block length is large compared to
&y the memory of the channel. The error probability formulation (i.e., Eq. (4.1a)) allows the jamming
Q : memory to equal the blocklength, whereas the mutual information formulation always assumes that the
Wi blocklength of the code is large compared to the jamming memory. Therefore the game involving
10

mutual information gives an a priori advantage to the transmitter, and it is not surprising that this
“ approach leads to much more optimistic results for the transmitter. We conclude that, at least for
:n‘ j GAVCs, one must be careful in attributing a coding significance to games having mutual information as

L a payoff function.
I
,‘: W From a practical viewpoint, the results of this report may be difficult to achieve or may lack
A meaning for a real jammer. Like the pulse-jamming signals considered by Houston [16], our e-optimal
: strategies demand high peak power when R is small; unlike Houston's, however, this peak power must
:;.' be sustained over the blocklength of the code. When n is large, the average power constraints (Al,
j‘.: AJ) may fail to reflect all the physical constraints that would limit a practical system. An extreme
f@ example: let n — +oo, then the optimal jamming strategy for the case Pl | AJ is of the form:
A ':- sy ~ N (0,P,/p) for all time with probability p, and s, = 0 for all time with probability | — p. One may
R approach a more realistic situation by considering multiple constraints on the jammer (as discussed in
s Section 2).
\U
e
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Appendix A

Proof of Lemma 1: To prove Lemma 1(a), let s and «* be as in the statement of the lemma, let w be
any unit vector in R™ and let T be any orthogonal transformation on R” that maps s into |s | w, i.e., so

that
Ts=|slw.
Since minimum distance decoding is used (and distances are preserved by 7). the following holds
almost surely:
Privi+n2+s€ A}) = Pr{Tvi+ Ty +|slw € T4},
The sets { TZ,’},-”’,. remain minimum distance decoding sets for the codewords { Tv M | and 52 are
spherically symmetric, and so are unchanged by T. We conclude that

Privi+n2s€At)=Privi+9®+Islw € 47},
for all w in the ensemble of w *, from which Lemma 1(a) immediately follows.
We now prove (b). Let the random variable m} be defined by

mI’El-r':+1w.|

and let F,(m) be its distribution function. It is easy to verify that, conditioned on the occurrence
m;* = m, the expression 9 + /w* is uniformly distributed on the n-sphere of radius m; hence, its
conditional distribution does not depend on I. Therefore, define the quantity

y(m) = Priul+n+tlo€c A}l Int+il0*|l=m). (A1)

Since A4*, is a set formed by the minimum distance rule, if m < s then

ttilw® -
ulf+m m_.— € A}
m;
implies
. rt+ilw® -
wi+a | 222 et
mj

and consequently, y(-) is monotone increasing. If for each m, F,(m) is monotone decreasing as a
function of /, then

Lwy(m)dF; (m) € Lmy(m) dF, (m) ,

which, according to Eq. (A1), is simply Lemma 1(b) disguised in different notation. It therefore only
remains to show that

“e'(

gll"‘b

S
AR

Pr{ilnt+ilw*l<m)<Plnt+in*|<m). (A2)
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‘ We shall, in fact, prove a stronger result that implies Eq. (A2):
L Prilnt+ile* PSS mlo <0l <Plint+le*P<mMlo*=0)

. for all . The latter inequality is an immediate consequence of the fact that the distribution of n?*
decreases monotonically and symmetrically with distance from the origin. This completes the proof of
- part (b), and Lemma 1.
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,1"' Appendix B
\)
\
;::l Proof of Lemma 2: Let (%} | be an i.i.d N (0,1) sequence. To prove Lemma 2(a), note that 2(a) is
'-‘ trivially true when € > 0; therefore take € > 0. We apply Chernoff’s bounding technique (e.g.
R Wozencraft and Jacobs [B1], Section 2.5) to obtain the following bounds:
r‘::t 'gn, l+e] S [VI+ee¥?]" (B1)
i
W = exp| 2 (n (l+e)—e)l
o 2
R
l © . /2
— “ g I- < | A B2
a "En'nl < < [V1 ee?] (B2)

= exp[ﬁ(ln(l—e)+e)

iy

Q 2

2.4

= We now make use of a well-known (e.g. Olmstead [B2]) expansion for In ( 1 + x ):

185 2 z

28 In (1+x)=x 2+3+f01+ dt, -1<x<1. (B3)
ﬁ

Let us use Eq. (B3) to derive approximations to the expressions that appear in the exponents of Eqgs.
(B1) and (B2); viz.,

3
€ € L
+ —€e=—4+ — — B4
' In(l+e¢)—c¢ 5 3 o T+ Id’ (B4)
l"
) 2 3 2 p)
! - 4+ &£ _ _€ _ <€
:2-! S 2 003 73
'y.;‘ €2 63 € ’3
In (1 - +e=—— — — — —
‘ n ( €) te= 5 3 fo - dt (BS)
e
N €? e’ €? 2e
480 -£ - £ ¢ |- =
N 2 2 3
:‘ Substituting these approximations into Eqs. {B1) and (B2), we obtain
R :: 1 &
2. Pril=Y n%—1|<e (B6)
A“ "\ n =1
.1""' l n l n
=Pr[—21;‘,2> 1+e +Pr[—2n',’< |—-el
: » n i no
3 ne’ 2e n e’
< L. 2 _ L€ —
;:' < 2exp 2 1 3 < exp THE
'
3
- The last inequality holds for all n larger than ngle) = 61n 2/€2(1 — €), which depends only on €. This
:" M completes the proof of Lemma 2(a).
s’\b
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' We now prove Lemma 2(b). For n = 1 and 2, by direct calculation we obtain
gl Priqn%y?21) = 03174, (B7)

and

e ! =0.3679, (B8)
i PR

so that Lemma 2(b) holds for these values of n. For n 2 3, we proceed as follows:
o0 a(n—2)/2e—a/2

l n . (a)
e PPk 21f=f da
:"{ =1 2n/2r n
- 2

iy (B pn=2/2 p=n/2 fuo an-42 p=al2
n—-2

\A -
(-2 | 12
2 r[ 2 l

da

(n=/2p|
et

n—2

,!‘.J (c) 1 n—2

Tt = Pr 21)'}2?1 +e€,, (B9)
i=1

« where

o n(n=2/2,-n/2 n a'n=4/2 gmal2

7, €,

) =2
qta-n/2p| 2 (n=-02p | =<

f r 5 2 r 2

da . (B10)

n
These steps are justified in the following way: (a) follows from the observation that ¥ 1*? has the

i=1
2 standard chi-square density with n degrees of freedom (cf. (B3]); (b) follows from (a) by using
> integration by parts; and (c) is merely a rearrangement of (b).

We now claim that €, > 0 for all » 2> 3. If true, this together with Eq. (B9), (B7), and (B8)
a, would imply (b). To prove this claim, bound the integral in Eq. (B10) as follows:

N, (n-4)/2 ,-a/2 ) - n/2

:"“ n a'” / e a/ (: n/2 n/2 “ —alm) da
¥ da =

o n-2 n—2 2

a
yn-D2p l "2 2 I 9ta=2/2p [ l a

» (2) "n/l (’—"/2 f" da
] n

.

> M a o
P AL

- 2
n—2 ? o
2
() "(n-Z)/Ze—n/Z

2(n—2)/2 T

-
3

P

2(n-2)/2 n
5 i

Equation (a) is simply a rearrangement of factors; (b) follows by observing that the bracketed expres-
sion is strictly less than one when a/n < 1. (¢) results when the integral in (b) is evaluated. This
completes the proof of the claim and Lemma 2. [
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RN Appendix C

‘,J"\:
.,.f:: In this appendix, we study the following two-player, zero-sum game (cf. Blackwell and Girshik
Sy (C1]). Let a, b, and ¢ be real numbers such that a,b > 0 and ¢ > 0. Player I’s (respectively, player
il II's) allowable strategies consist of all nonnegative, real-valued, random variables X (resp. Y) satisfying
': ; EX < a (resp. EY < b).* The payoff to player I, when I plays X and Il plays Y, is

\.: PriX 2 Y+c}. (C1)
el . . o
:{\‘ Player | wishes to maximize Eq. (Cl); player Il wants to minimize it. Therefore, | and 1l seek stra-
Rhd tegies that attain the outer extrema in the programs

Program I: v = sup inf PrlX > Y+c}, (C2a)
toah = XEX <a YEY <b
‘-'.E‘: Program Il: v = )}?fq Sup PriX > Y+c¢). (C3a)
x:')‘ o -

"; If a strategy exists that attains the outer extrema for Program 1 (resp. II), it is called an optimal strategy
L. for player 1 (resp. II). It is always true that v > v, if v = p, then the game is said to have a value,

o vo=v = v. A saddle-point solution to this game (if it exists) is a pair of allowable strategies, say

:: (Xo, Yo), such that
’y:().':': PriX2 Yo+c)SPr{Xg2 Yo+c) S PrlXo>Y+c) (C4)
'r‘\.\
A oA

is satisfied for all allowable (X,Y). The existence of a saddle-point is a sufficient condition for a value
to exist; in this case we have

};-; vo=v=v="Pr{Xo2 Yo+ c) (C5)
b

P . .
y ".-: and thus X, (resp. Y;) is an optimal strategy for player I (resp. player I1).
NS . . . . . .

' In this appendix, we derive a unique saddle-point solution to Eq. (C3a). The special case
o1 a =b=1,c =0, has been studied by Beil and Cover [C2] in connection with competitive investment,
.,}; and the special case ¢ = 0 has been studied by McEliece and Rodemich [C3] as part of a study of
¥ ,,-:: optimal jamming of uncoded MFSK. We construct the general solution of Eq. (C2a) from the known
:3 X solution in the special case ¢ = 0. Without many of the complications that arise in the MFSK problem
: pey studied in Ref. C3 this special case admits a proof that is much simpler than that given in Ref. C3; we

i present this below.
"‘:"u Lemma 1: (Bell-Cover-McEliece-Rodemich) Consider the two-player, zero-sum game given by Eq.
M . . .
4 (C3a) when ¢ = 0. This game has a value v, and unique saddle-point strategies Xo ~ Fyand Yy ~ G
:{. These are given, in the case @ 2 b, byt
e vo=1— =2 (C6a)
dhat LS = - =,

0 2a

q:l;i' X Fo(x) = Ujgaa (x), (C6b)
Ny
uﬁ:gzg b b
i Go(x) = | =] Upgaa (x) + {1 = =] Ag(x); (Céc)
] a a
g -

v * In this appendix. we ahandon the convention. used earlier in the report, that distinguishes random variables with asterishs
R *Throughout this appendix we use the following notation: X ~ F means that the real-valued random variable X has distribution
‘ '\:; function F. We denote by Uy, ») (x) the distribution function of a random variable that is uniformly distributed on the interval
n,: ‘,'1. [a.b]. and we denote by A, (x) the distribution function of the trivial random variable ¥ = ¢,
:":'5
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0 and, if a < b, are given by
e =8
: " Vo 25 s (C6d)
.+ Fo(x) = [%l Uto2s) (x) + |1 — %] Aglx), (Cée)
XA
’ . GO (x) = UIO.ZM (x). (Cé6f)
[ Remark: The proof given here is a generalization of Bell and Cover’s [C2].
W Proof Let X — F and Y — G be any allowable strategies. Observe that
& = *
3 Prix 2 Y= GdFe)=1- " F(x-)dG(x). (€7
.
W, First consider the case a 2 b. Let us show lhat (Xy. Yy) satisfies Eq. (C4) when ¢ = 0. Using the
obvious inequality Uy 4 (x) < x/d when x 2 0, we then obtain

. PrLX 2 Yol = [ Golx) dF (x)

%

: b ’

—ll '; +';J:) b[o‘zﬂl(x)dF(X)

)

N b b °°
> <| -2+ 25 [ x dF

. b

_.-: <1 ?a“ = V. (C8)

In much the same way, using the right-most equality in Eq. (C7), we can show

.'
.. PriXo> Y) > v. (C9)
N\
:' Since Pr{ Xy 2 Yy} = vy. we conclude that (X, Y;,) is a saddle-point and v, is the value of the game.
LA
To complete the proof in the case @ 2 b, it only remains to show the uniqueness of F, and G,.
:' First consider G,. Let Yy ~ G; be any other random variable such that EYy; < b and
n
" PriX 2 Yy} < vy, (C10)
1
¥
v for alt admissible X. Substitution of
I (1): X —~ UI()AZal(X)‘
2
- (2): X A, o (x) a (
X . . +
..: a g « X a+B Aa#ﬁ X)v
forall 0 < a,B8 < a, into Eq. (C10) yields, respectively
- (1):G{ Qa) =1,
z 2 | £- + +
x (2) atp Go(a —a) a+ﬁlGO(a B)
n forall 0 € a,8 < a.
s
,
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ﬂ;‘.; We claim that (2) implies that there is a line, say /(x), that passes through the point (a,vy) and is
i such that

and Go (x) € 1(x), (c1n

for all x 2 0. To prove this claim, define*

o Gi (a+B) — v
NS u = max LolatB 7 Vo o 4o (C12)
2“.. B B8
S
R and let B attain the maxima. Let /(x) be the line through (a,vy) having slope 4. We know that
. Gy (a) < vo=1(a) (proof: take a = 8 =0 in (2)). By construction, / (x) satisfies Eq. (Cl1) when
;:; x 2 a, and passes through the point (a+8, Gy (a + 8)). Now if
S
:y G; (a—a) > [(a—a), (C13)
,\‘.4'
!.' _
i for some 0 € a X a, then a and 8 violate (2). Therefore, to avoid a contradiction, / {x)} must satisfy
Eq. (C11) for 0 £ x < a as well, proving the claim.
Sy
e
-,«ﬁ We now show that Eq. (C11) implies that Gy = G,. For any measurable function, say f (x), let
uY v, denote the Lebesgue volume of the region in R? comprising the points
s "ﬂ: R, ={(x,») 10 < x < 2a, f(x) €y < 1) Byan elementary fact of probability theory and (1), we
8 know that
ot vey= EYg < b. (C14)
o
W
K ::' Equation (C11) implies that »¢; 2 v/, and hence
e,
s v < b (15)
'.’\.n Since 1(0)2 Gy (0) 2 0.1Qa) = G; (2a) =1 and I (a) = vy, R, is a triangular region and ! (0)
_"-:.:, must be such that 0 < /(0) < 2v, — |. By elementary geometry, we can show that
e a(l~-1(0))
N =7 (C16)
1T 2 (v - 140))
4
B
’l for all 0 < /(0) < 2vy— 1. Itis easy to show that Eq. (C16) is a strictly decreasing function of / (0)
. ::-, that attains a minimum value of », — & when /(0) = 2v, — 1. Therefore the only line, /(x), that
3‘” passes through (a, vy) and that does not contradict Eq. (C15) satisfies / (0) = 2v, — 1, and hence
) (0!
C.u E.- b b .
. 1(x) = I - — c1n
Y "‘ _'- a a
.:::-‘,.' Comparing Eq. (C17) with Eq. (C6c), we see that [/ cquals G, for all x such that
e 0< x<2aand0 < /(x) < 1. It follows from Eq. (Cl1), the nonnegativity of Y;and Y. and (1),
e 4 that
SOAD G (x) < Gy(x)
'L'_:.
K :_:{ for all real x. This implies that &) = G, since il Gy (x) < Gy (x) for some 0 < x € 24 . then
,'l EY, = Ve, > Ve, = b,
T” :T;\;_ m;l n lq (( 12) s gusofied because (Gy Lat ) - vgd/ s upper semicontinuous, and the night hand inequality. because
; 4:.? this function 1s bounded by v, /a (to prove take a = a in (2))
"iﬂ
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a contradiction. We conclude that, in the case @ 2 b, Gy is unique. The proof that Fy is unique, and
the proofs for the case a < b, are similar. This completes the proof of Lemma 1. ]

We now consider the game Eq. (C2a) when ¢ > 0, and show that the sclution in this case can be
constructed from the known solution for the case ¢ = 0. To see this, note thalt any nonnegative
X —~ F that satisfies £X < a can be decomposed in the following way:

x=1°¢ + Z w.p.p
W wp l=p (C18)
where p=1~ F(c—)and W — L and Z ~ H are nonnegative real--'alued random variables. The
distribution functions L and H are given by
F(x)
—_— — < <
L) ={F(cm =*=¢
I x2¢
if F(c—) > 0, otherwise L (x) = A, (x); and
0 —o < x <0
H(x) =1 F(x+c) — F(c-)
20
1 — F(c) Xz
if Flc—) < 1, otherwise H (x) = Ay (x).
In terms of the new variables p, Z, and W the cost function Eq. (C1) becomes
PriX2Y+cl=pPlZ+c2VY+c)
+(l=p)Pr{W>=Y+c)
—pPrlZ>r). (C19)

Clearly. W has no effect on the cost function Pr{X = Y + ¢, only our choice of p and Z influence
it. The latter choice is constrained by

EX =0l —p)YEW +ple+ FEZ) L a

or
17 < a—-tl1-p)ERW
Py & ~ - - -
n
so that the widest choice of Z 18 permitted when = 0 and
te< ¢ o= (p).

I
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Using this decomposition, we can reformulate Eq. (C2a) in the following way:

Program I v = sup infl pPrliZ=2VY), (C20)
T G VELsatp) Y EYSH
Program Il: v = inf sup pPriZ 2 Y}, (C20)

Y EYs b (pZ2VEZ SO

Games Egs. (C2a) and (C20a) are equivalent in the following sense: If X, py, and Z, are related
as in Eq. (C18), then {(py.Zy). Yo} is a saddle-point for Eq. (C20a) if and only if (X,, Yy) is a saddle-
point for Eq. (C2a): and, of course, the resulting values of both games arc the same. Therefore, solv-
ing Eq. (C204) is entirely equivalent to solving Eq. (C2a).

Using Eq. (C204), we can derive the only candidate saddle-point for Eq. (C2a) in the following
way. Suppose that | (py.Zy). Yy is a saddle-point so that

pPrlZ =Y < pyPriZy2 Yol < pyPrizZy> V) (c21)
for all admissible { (p.Z), ¥Y'}. Then, in particular, we have
poPriZ 2 Yol S poPriZo2 Yol < py PriZo2 Y (C22)

for all (Z.Y) such that {(py.Z), Y] is allowable. lgnoring momentarily the trivial possibility that
po = 0, Eq. (C22) implies that (Z,, ¥,) must be a saddle-point of Eq. (C2a) with constants

a ==L —c.b=b,c=0. (C23)
Po

Since Eq. (C6a) gives the unique sofution to Eq. (C2a) when ¢ = 0, we conclude that (Z,, Yy) must
have the distributions Fy and G, obtained when the constants Eq. (C23) are substituted into Eq. (Cé6a).
The corresponding value of this game, as a function of pg, is

b .
Po - N (p()) Z b
24 (po) (C24)
(po) =
o podlpd) oy
07 -

We now show that Eq. (C21) fixes a value for pg as well. If {(pg, Zy). Yo} is a saddle-point for Eq.
(C20a), then the left-hand bound in Eq. (C21) implies that

= max .
o= IR Yo (p)
Using this. we may explicitly find the only possible saddle-point. The following facts will be useful:
FACTS:

(1): The maxima of v, (p) over the range 0 < p < | is attained by

a b b 2¢
e — < ¢ Z <t
. 1 Y a\(+2 I+.‘/l+b
Po = (C25)
i a>('+—l+-\/l+2b£l

and note that py € a/c¢ when ¢ > 0.

36
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(2): Define g (p) on the interval 0 € p < a/c by
b bc
a (p) 2a% (p)

gp) =

Then g(pg) =0if 0 < pp < 1,and g(po) 2 0if po=1.

(3): aflpy) = bforalla,b > 0, and ¢ > 0, where p, is as defined in Eq. (C25).

Therefore, based on facts (1) and (3), Lemma 1, and the comments above, the only possible
saddle-point for the game Eq. (C20a) is py, Zo ~ Hy and Yy ~ G, where py is given in Eq. (C25) and

RN Ho (x) = Ug 35,1 (), (C26a)

o b

Golx)=|——1| Uy ,: (x—c)+}1- Aglx) . (C26b)

: 0 ( 7 (pg) l (0.2 (pg! 2 (o) 0
‘Ja

. Remark: Note that a > 0 implies that a (py) = p_ — ¢ > 0, so that Eq. (C26b) is always well-
0
N .’:: defined.
)
:; Hy and G, are obtained by substituting py above into Eq. (C23), substituting the resulting con-
& stants into Eq. (C6a), and taking Hy = F,. The corresponding value of the game is
%
s a 1+ ﬁ - + E <c+ 2 lg
_::.3 A - 1 1 b a<sc 3 1+ ~\ / 1+ b
:i".'u Vo = b
o = 2G = a>c+— .,/1+2c]
:-_ We have shown that {(p,, Zy), Yy} is the only candidate for a saddle-point for the game Eq.
.. (C20a); let us now verify that this is indeed a saddle-point. Let { (p,Z),Y} be any admissible triple,
R and suppose that Z —~ H and ¥ ~ G. Then
R o
B\ pPriZ 2 Yol =p [ Golx)dH (x)

' b bp bl

,!, =p|1-= + - + Uy ,s (x) dH (x)
:": a (pg) ] a (py) j:) 10.2a (p?}
Pl b I bp «°

<£pll- + x dH (x)

;?k = a (py) ) 24’ (py) fo
»ya

. b bpa (p)

2y €p|l-

3 - alpy) | 2a%(py
. b be ba
=r|l-——~- 3 "
..~ a (pg) 2a° (py) 2a°(py)

‘ ba

=peglp) + 3 —

;’.' 0 2a% (py)
i
ko)
,

vy
5
. .
'1'
:: 37
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T From fact (2) it follows that pg (po) € pog (po) and therefore
: p Pr(Z > Yol € pog(po) + —r22—
N 2a°(py)
“‘vﬁ,s
=ptl- b =v
N ° 2a (py) 0
(= The proof of
gy
W% poPr{20> Y}?VO
i:‘
;‘ J for all allowable Y is similar to the proof of Lemma | and so is omitted.
s
fl . . .
RN We conclude that {(py.Zp). Yo} is the unique saddle-point for Eq. (C20a) and that v is the
o corresponding value. Recalling the equivalence between the games Egs. (C20a) and (C2a) when
p.Z.and X are related by Eq. (C18) (cf. remarks following Eq. (C20a)), we have therefore proved the
; following:
o
N Theorem: Consider the two-player, zero-sum game given by Eq. (C2a). This game has a value v, and

unique saddle-point strategies Xo ~ Foand Yy ~ Go. These are given in Lemma | for the case ¢ = 0,
fr!\ and for the case ¢ > 0 by

A4

e atie o Jie X ace+ 2 lie S+ E

o ¢ c b 2 b
-:-‘: Vo = b (C27a)
K- ] - ———— b 2c

L Wa—c) a>c+7 1+ ]+T

e Fo(x) = po Upg sy (XD + (1= po) Bg (x), (C27b)
S

) b
s Gy(x) =|———Uy ,; (x=¢c) + |1 - Ay (x), (C27¢)
a0 ’ ‘awl o2l @ (po l '

; where a (p) =a/p — c and
D2

ol a b b 2c
D0 =11- Sc+ 1+ /1+=
o ! 2e+e)] TST2 VAR
i" Py = b 5
EX) c
+ = +5=

_- 1 a>c 3 I+ 1 b
AL

'ff" Remark: Note that some of the quantities above are indeterminant when ¢ = 0. Nevertheless the
55 saddle-point strategies and the value in Eq. (C27a) tend continuously to those of Lemma Ias¢c—0.
1 To see this. fix a > 0and b > 0 and denote by vy(c), Xo(c), and Y, (c), the value and saddlec-

points for the game Eq. (C2a) with parameters a, b, and ¢. As ¢ — 0, we have by clementary expan-
e, sion

(>
)
)
W and therefore
- a 2c a
NE =Ji+=]1- 1+ = ||=%+0()
;2:‘}‘\' c b 2bh
0
;I
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RO We also have, trivially,

1+ 1+—b€I=b+o(c).

. Therefore, we conclude that as ¢ — 0,
N vo (¢) — vy (0),
.h
.’E Xo (c) — Xy (0) (in law) ,

5 X Yo(c) — Yy (0) (in law),

b ! as clai .
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